Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 80(10): 3025-33, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610840

RESUMO

Homologous recombination plays an important role in the structuring of genetic variation of many bacteria; however, its importance in adaptive evolution is not well established. We investigated the association of intersubspecific homologous recombination (IHR) with the shift to a novel host (mulberry) by the plant-pathogenic bacterium Xylella fastidiosa. Mulberry leaf scorch was identified about 25 years ago in native red mulberry in the eastern United States and has spread to introduced white mulberry in California. Comparing a sequence of 8 genes (4,706 bp) from 21 mulberry-type isolates to published data (352 isolates representing all subspecies), we confirmed previous indications that the mulberry isolates define a group distinct from the 4 subspecies, and we propose naming the taxon X. fastidiosa subsp. morus. The ancestry of its gene sequences was mixed, with 4 derived from X. fastidiosa subsp. fastidiosa (introduced from Central America), 3 from X. fastidiosa subsp. multiplex (considered native to the United States), and 1 chimeric, demonstrating that this group originated by large-scale IHR. The very low within-type genetic variation (0.08% site polymorphism), plus the apparent inability of native X. fastidiosa subsp. multiplex to infect mulberry, suggests that this host shift was achieved after strong selection acted on genetic variants created by IHR. Sequence data indicate that a single ancestral IHR event gave rise not only to X. fastidiosa subsp. morus but also to the X. fastidiosa subsp. multiplex recombinant group which infects several hosts but is the only type naturally infecting blueberry, thus implicating this IHR in the invasion of at least two novel native hosts, mulberry and blueberry.


Assuntos
Recombinação Homóloga , Especificidade de Hospedeiro , Morus/microbiologia , Doenças das Plantas/microbiologia , Xylella/genética , Dados de Sequência Molecular , Morus/classificação , Filogenia , Estados Unidos , Xylella/classificação , Xylella/fisiologia
2.
PLoS One ; 6(1): e16318, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21298007

RESUMO

BACKGROUND: ABCB5 is a member of the ABC protein superfamily, which includes the transporters ABCB1, ABCC1 and ABCG2 responsible for causing drug resistance in cancer patients and also several other transporters that have been linked to human disease. The ABCB5 full transporter (ABCB5.ts) is expressed in human testis and its functional significance is presently unknown. Another variant of this transporter, ABCB5 beta possess a "half-transporter-like" structure and is expressed in melanoma stem cells, normal melanocytes, and other types of pigment cells. ABCB5 beta has important clinical implications, as it may be involved with multidrug resistance in melanoma stem cells, allowing these stem cells to survive chemotherapeutic regimes. METHODOLOGY/PRINCIPAL FINDINGS: We constructed and examined in detail topological structures of the human ABCB5 protein and determined in-silico the cSNPs (coding single nucleotide polymorphisms) that may affect its function. Evolutionary analysis of ABCB5 indicated that ABCB5, ABCB1, ABCB4, and ABCB11 share a common ancestor, which began duplicating early in the evolutionary history of chordates. This suggests that ABCB5 has evolved as a full transporter throughout its evolutionary history. CONCLUSIONS/SIGNIFICANCE: From our in-silco analysis of cSNPs we found that a large number of non-synonymous cSNPs map to important functional regions of the protein suggesting that these SNPs if present in human populations may play a role in diseases associated with ABCB5. From phylogenetic analyses, we have shown that ABCB5 evolved as a full transporter throughout its evolutionary history with an absence of any major shifts in selection between the various lineages suggesting that the function of ABCB5 has been maintained during mammalian evolution. This finding would suggest that ABCB5 beta may have evolved to play a specific role in human pigment cells and/or melanoma cells where it is predominantly expressed.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Evolução Molecular , Polimorfismo de Nucleotídeo Único , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Animais , Cordados/genética , Humanos , Melanócitos/química , Melanoma/química , Melanoma/genética , Filogenia
3.
Virology ; 360(2): 419-33, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17156811

RESUMO

The tripartite motif (TRIM) protein, TRIM5alpha, restricts some retroviruses, including human immunodeficiency virus (HIV-1), from infecting the cells of particular species. TRIM proteins contain RING, B-box, coiled-coil and, in some cases, B30.2(SPRY) domains. We investigated the properties of human TRIM family members closely related to TRIM5. These TRIM proteins, like TRIM5alpha, assembled into homotrimers and co-localized in the cytoplasm with TRIM5alpha. TRIM5alpha turned over more rapidly than related TRIM proteins. TRIM5alpha, TRIM34 and TRIM6 associated with HIV-1 capsid-nucleocapsid complexes assembled in vitro; the TRIM5alpha and TRIM34 interactions with these complexes were dependent on their B30.2(SPRY) domains. Only TRIM5alpha potently restricted infection by the retroviruses studied; overexpression of TRIM34 resulted in modest inhibition of simian immunodeficiency virus (SIV(mac)) infection. In contrast to the other TRIM genes examined, TRIM5 exhibited evidence of positive selection. The unique features of TRIM5alpha among its TRIM relatives underscore its special status as an antiviral factor.


Assuntos
Proteínas de Transporte/metabolismo , HIV-1/fisiologia , Nucleocapsídeo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fatores de Restrição Antivirais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Citoplasma/química , Cães , HIV-1/imunologia , Células HeLa , Humanos , Macaca mulatta , Proteínas de Membrana/metabolismo , Filogenia , Ligação Proteica , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
4.
Mamm Genome ; 17(3): 257-70, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16518693

RESUMO

Comparison of orthologous gene sequences is emerging as a powerful approach to elucidating functionally important positions in human disease genes. Using a diverse array of 132 mammalian BRCA1 (exon 11) sequences, we evaluated the functional significance of specific sites in the context of selection information (purifying, neutral, or diversifying) as well as the ability to extract such information from alignments that index varying degrees of mammalian diversity. Small data sets of either closely related taxa (Primates) or divergent placental taxa were unable to distinguish sites conserved due to purifying selection from sites conserved due to chance (false-positive rate = 65%-99%). Increasing the number of placental taxa to 57 greatly reduced the potential false-positive rate (0%-1.5%). Using the larger data set, we ranked the oncogenic risk of human missense mutations using a novel method that incorporates site-specific selection level and severity of the amino acid change evaluated against the amino acids present in other mammalian taxa. In addition to sites undergoing positive selection in Marsupialia, Laurasiatheria, Euarchontoglires, and Primates, we identified sites most likely to be undergoing divergent selection pressure in different lineages and six pairs of potentially interacting sites. Our results demonstrate the necessity of including large numbers of sequences to elucidate functionally important sites of a protein when using a comparative evolutionary approach.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto , Seleção Genética , Animais , Proteína BRCA1/metabolismo , Neoplasias da Mama/metabolismo , Evolução Molecular , Feminino , Mamíferos , Filogenia
5.
Appl Environ Microbiol ; 71(12): 8491-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16332839

RESUMO

Multilocus sequence typing (MLST) identifies and groups bacterial strains based on DNA sequence data from (typically) seven housekeeping genes. MLST has also been employed to estimate the relative contributions of recombination and point mutation to clonal divergence. We applied MLST to the plant pathogen Xylella fastidiosa using an initial set of sequences for 10 loci (9.3 kb) of 25 strains from five different host plants, grapevine (PD strains), oleander (OLS strains), oak (OAK strains), almond (ALS strains), and peach (PP strains). An eBURST analysis identified six clonal complexes using the grouping criterion that each member must be identical to at least one other member at 7 or more of the 10 loci. These clonal complexes corresponded to previously identified phylogenetic clades; clonal complex 1 (CC1) (all PD strains plus two ALS strains) and CC2 (OLS strains) defined the X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi clades, while CC3 (ALS strains), CC4 (OAK strains), and CC5 (PP strains) were subclades of X. fastidiosa subsp. multiplex. CC6 (ALS strains) identified an X. fastidiosa subsp. multiplex-like group characterized by a high frequency of intersubspecific recombination. Compared to the recombination rate in other bacterial species, the recombination rate in X. fastidiosa is relatively low. Recombination between different alleles was estimated to give rise to 76% of the nucleotide changes and 31% of the allelic changes observed. The housekeeping loci holC, nuoL, leuA, gltT, cysG, petC, and lacF were chosen to form the basis of a public database for typing X. fastidiosa (www.mlst.net). These loci identified the same six clonal complexes using the strain grouping criterion of identity at five or more loci with at least one other member.


Assuntos
Variação Genética , Plantas/microbiologia , Mutação Puntual , Recombinação Genética , Xylella/genética , Sequência de Bases , Primers do DNA , Amplificação de Genes , Filogenia , Doenças das Plantas/microbiologia , Xylella/classificação , Xylella/isolamento & purificação , Xylella/patogenicidade
6.
Appl Environ Microbiol ; 71(7): 3832-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16000795

RESUMO

Xylella fastidiosa is a pathogen that causes leaf scorch and related diseases in over 100 plant species, including Pierce's disease in grapevines (PD), phony peach disease (PP), plum leaf scald (PLS), and leaf scorch in almond (ALS), oak (OAK), and oleander (OLS). We used a high-resolution DNA sequence approach to investigate the evolutionary relationships, geographic variation, and divergence times among the X. fastidiosa isolates causing these diseases in North America. Using a large data set of 10 coding loci and 26 isolates, the phylogeny of X. fastidiosa defined three major clades. Two of these clades correspond to the recently identified X. fastidiosa subspecies piercei (PD and some ALS isolates) and X. fastidiosa subsp. multiplex (OAK, PP, PLS, and some ALS isolates). The third clade grouped all of the OLS isolates into a genetically distinct group, named X. fastidiosa subsp. sandyi. These well-differentiated clades indicate that, historically, X. fastidiosa has been a clonal organism. Based on their synonymous-site divergence ( approximately 3%), these three clades probably originated more than 15,000 years ago, long before the introduction of the nonnative plants that characterize most infections. The sister clades of X. fastidiosa subsp. sandyi and X. fastidiosa subsp. piercei have synonymous-site evolutionary rates 2.9 times faster than X. fastidiosa subsp. multiplex, possibly due to generation time differences. Within X. fastidiosa subsp. multiplex, a low level ( approximately 0.1%) of genetic differentiation indicates the recent divergence of ALS isolates from the PP, PLS, and OAK isolates due to host plant adaptation and/or allopatry. The low level of variation within the X. fastidiosa subsp. piercei and X. fastidiosa subsp. sandyi clades, despite their antiquity, suggests strong selection, possibly driven by host plant adaptation.


Assuntos
Evolução Molecular , Variação Genética , Família Multigênica , Filogenia , Doenças das Plantas/microbiologia , Xylella/genética , Proteínas de Bactérias/genética , DNA Bacteriano/análise , DNA Ribossômico/análise , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Xylella/classificação
7.
Mol Phylogenet Evol ; 30(3): 778-88, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15012955

RESUMO

From an evolutionary perspective, "insectivores" have been one of the most important mammalian groups for over a century. Morphologists have successively pruned flying lemurs, elephant shrews, and tree shrews from Insectivora, but have retained chrysochlorids, tenrecs, erinaceids, soricids, talpids, and solenodontids in crown-group Lipotyphla. With the appearance of large molecular data sets, the monophyly of Lipotyphla has proved untenable. Rather, an emerging consensus is that Lipotyphla is a diphyletic taxon comprised of two monophyletic groups, Afrosoricida and Eulipotyphla. A recent paper by Malia et al. [Mol. Phylogenet. Evol. 24 (2002) 91-101] challenged this view and argued that "While the data [Growth Hormone Receptor] were unable to support the orders Lipotyphla, Eulipotyphla, and Tenrecoidea [= Afrosoricida] this was most likely due to the polyphyly of these groups and not to problems associated with the gene itself such as saturation or highly divergent sequences em leader " (p. 100). We analyzed Malia et al.'s original GHR data set (at both nuclear and protein level), an expanded GHR data set that included 49 additional sequences, and a concatenated data set that included GHR, BRCA1, vWF, and A2AB for a diverse selection of lipotyphlan taxa. Although protein analyses proved inconclusive, all analyses at the DNA level clearly show that the statement of Malia et al. is erroneous. Indeed, likelihood analyses with GHR and with the concatenated data set provide more support for Eulipotyphla and Afrosoricida than for competing hypotheses. These results also highlight the potential pitfalls of single-gene and parsimony-only analyses.


Assuntos
Receptores da Somatotropina/genética , Musaranhos/genética , Animais , Classificação , Bases de Dados como Assunto , Evolução Molecular , Filogenia , Análise de Sequência de DNA
9.
Mol Phylogenet Evol ; 28(2): 186-96, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12878458

RESUMO

Relationships among the seven extant orders of marsupials remain poorly understood. Most classifications recognize a fundamental split between Ameridelphia, which contains the American orders Didelphimorphia and Paucituberculata, and Australidelphia, which contains four Australasian orders (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelina) and the South American order Microbiotheria, represented by Dromiciops gliroides. Ameridelphia and Australidelphia are each supported by key morphological characters with dichotomous character states. To date, molecular studies indexing all marsupial orders have reported inconclusive results. However, several studies have suggested that Dromiciops is nested within Australidelphia. This result has important implications for understanding the biogeographic history of living marsupials. To address questions in higher-level marsupial systematics, we sequenced portions of five nuclear genes (Apolipoprotein B gene; Breast and Ovarian cancer susceptibility gene 1; Recombination activating gene 1; Interphotoreceptor retinoid binding protein gene; and von Willebrand factor gene) for representatives of all orders of marsupials, as well as placental outgroups. The resulting 6.4kb concatenation was analyzed using maximum parsimony, distance methods, maximum likelihood, and Bayesian methods. tests were used to examine a priori hypotheses. All analyses provided robust support for the monophyly of Australidelphia (bootstrap support=99-100%; posterior probability=1.00). Ameridelphia received much lower support, although this clade was not rejected in statistical tests. Within Diprotodontia, both Vombatiformes and Phalangeriformes were supported at the 100% bootstrap level and with posterior probabilities of 1.00.


Assuntos
Marsupiais/classificação , Filogenia , Análise de Sequência de DNA , Animais , Austrália , Sequência de Bases , Teorema de Bayes , Análise por Conglomerados , Geografia , Funções Verossimilhança , Marsupiais/genética , Dados de Sequência Molecular
10.
Mol Biol Evol ; 19(10): 1656-71, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12270893

RESUMO

Extant xenarthrans (armadillos, anteaters and sloths) are among the most derived placental mammals ever evolved. South America was the cradle of their evolutionary history. During the Tertiary, xenarthrans experienced an extraordinary radiation, whereas South America remained isolated from other continents. The 13 living genera are relics of this earlier diversification and represent one of the four major clades of placental mammals. Sequences of the three independent protein-coding nuclear markers alpha2B adrenergic receptor (ADRA2B), breast cancer susceptibility (BRCA1), and von Willebrand Factor (VWF) were determined for 12 of the 13 living xenarthran genera. Comparative evolutionary dynamics of these nuclear exons using a likelihood framework revealed contrasting patterns of molecular evolution. All codon positions of BRCA1 were shown to evolve in a strikingly similar manner, and third codon positions appeared less saturated within placentals than those of ADRA2B and VWF. Maximum likelihood and Bayesian phylogenetic analyses of a 47 placental taxa data set rooted by three marsupial outgroups resolved the phylogeny of Xenarthra with some evidence for two radiation events in armadillos and provided a strongly supported picture of placental interordinal relationships. This topology was fully compatible with recent studies, dividing placentals into the Southern Hemisphere clades Afrotheria and Xenarthra and a monophyletic Northern Hemisphere clade (Boreoeutheria) composed of Laurasiatheria and Euarchontoglires. Partitioned likelihood statistical tests of the position of the root, under different character partition schemes, identified three almost equally likely hypotheses for early placental divergences: a basal Afrotheria, an Afrotheria + Xenarthra clade, or a basal Xenarthra (Epitheria hypothesis). We took advantage of the extensive sampling realized within Xenarthra to assess its impact on the location of the root on the placental tree. By resampling taxa within Xenarthra, the conservative Shimodaira-Hasegawa likelihood-based test of alternative topologies was shown to be sensitive to both character and taxon sampling.


Assuntos
Filogenia , Xenarthra/classificação , Xenarthra/genética , Animais , Tatus/classificação , Tatus/genética , Composição de Bases , Sequência de Bases , DNA/química , DNA/genética , Evolução Molecular , Genes BRCA1 , Marcadores Genéticos , Mamíferos/classificação , Mamíferos/genética , Marsupiais/classificação , Marsupiais/genética , Receptores Adrenérgicos alfa 2/genética , Bichos-Preguiça/classificação , Bichos-Preguiça/genética , Fator de von Willebrand/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...